Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547058

RESUMO

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA , Dioxigenases , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , RNA , Evasão da Resposta Imune , Glioma/patologia , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , RNA Nuclear Pequeno , Microambiente Tumoral , Fatores de Processamento de RNA/genética , Proteínas Repressoras/metabolismo
2.
Thorac Cancer ; 14(33): 3247-3258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795778

RESUMO

The third most prevalent type of epidermal growth factor receptor (EGFR) mutation, EGFR exon 20 insertions (EGFRex20ins), involves 2%-12% of all cases of EGFR-positive non-small cell lung cancer (NSCLC). Approximately 90% of the mutations occur within the loop structure region, and the most frequently reported subtypes are A767_V769dup and S768_D770dup, which together account for almost 50% of instances. Apart from the unique subtype of A763_Y764insFQEA, NSCLCs with EGFRex20ins are resistant to approved EGFR tyrosine kinase inhibitors (TKIs) and are also insensitive to chemotherapy or immunotherapy. A new modality of treatment for NSCLC patients with EGFRx20ins has been established with the approval of mobocertinib and amivantamab. There are also numerous novel targeted treatments for NSCLC with EGFRex20ins in development, which are anticipated to improve this patient population's survival even further. This review provides a reference for the clinical management of these patients by summarizing the most recent epidemiological, and clinicopathological characteristics, diagnostic techniques, and therapeutic advances of EGFRex20ins in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Mutagênese Insercional , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Receptores ErbB , Éxons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...